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Abstract. We study self-avoiding walks (SAWS) on percolation clusters. A scaling function 
representation for R, the mean end-to-end distance, is proposed which describes a crossover 
from ordinary SAWS to SAWS on fractals. We distinguish between SAWS on a single cluster 
for which R - N'I and SAWS on all clusters for which R - N"2, where N is the number 
of monomers in the walk. We estimate u l ( d  = 2) - 1.285 and the correction-to-scaling 
exponent n(d = 2) = 1.3, and u l ( d  = 3) = 1.38. Two plausible generalisations of the Flory 
approximation for u1 are investigated and it is argued that none of them provides a 
satisfactory approximation for ul at all dimensions. 

In the past few years random processes on fractal structures have been studied with 
increasing interest. The most prominent and physically appealing fractal system is the 
largest percolation cluster at the percolation threshold p, ,  which also possesses a fractal 
structure above pc on any length scale smaller than the percolation correlation length 
&,. Experimental work of several authors (Voss et a1 1982, Kapitulnik and Deutscher 
1982) has shown the importance of fractal structure of the percolation clusters in 
representing disordered systems. In the past two years ordinary (P6lya) random walks 
on percolation clusters have been studied by several authors (Alexander and Orbach 
1982, Gefen ef a1 1983, Rammal and Toulouse 1983, Ben-Avraham and Havlin 1982, 
1983, Pandey and Stauffer 1983, Sahimi and Jerauld 1983). These random walks 
provide a simple way of measuring the spectral dimension d, which describes the 
power-law behaviour of harmonic excitations N ( w )  at low frequency w :  N ( w )  - c o d s - ' .  
The spectral dimension for any fractal structure is defined (Alexander and Orbach 
1982) as twice the ratio of the fractal dimension df of the cluster and the fractal 
dimension d, of the random walk on the cluster: d, = 2d,/d,. The spectral dimension 
appears to be an intrinsic property of the fractal structure. 

In this letter we study self-avoiding walks (SAWS) on percolation clusters. This 
problem was first studied by Chakrabarti and KertCsz (1981) who were interested in 
the effect of the lattice disorder on the critical properties of SAWS. According to Harris's 
criterion (Harris 1974) if the specific heat exponent a of a pure system is positive, 
the introduction of impurities should introduce new critical properties for the system. 
Since for SAWS on fully connected lattices a is positive for all dimensionalities 1 s d < 
4 = d,, where d, is the upper critical dimensionality, Chakrabarti and KertCsz (1981) 
concluded that SAWS on percolation clusters at any p > pc,  the fraction of occupied 
bonds or sites, should belong to a different universality class from the ordinary SAWS. 

This was disputed by Kremer (1981) who presented Monte Carlo simulation results 
for SAWS on the diamond lattice which indicate that above pc the critical properties 
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of SAWS remain unchanged. Dhar (1978) solved SAW problems exactly on several 
pseudo lattices, The SAWS on percolation clusters may have relevance to the backbone 
of the clusters. This matter will be discussed elsewhere. 

The main quantity of interest is the mean end-to-end distance R which varies with 
the number of visited sites N as 

R-N”, (1) 

where v is a universal critical exponent. For SAWS on fully connected lattices v( d = 1) = 
1, while fox d 2 4 the self-avoiding effect becomes negligible and R grows in the same 
way as in ordinary (P6lya) random walks; thus v( a’ 3 4) = 4 with a logarithmic correction 
at d = 4. The value of v at d = 2 was conjectured by Nienhuis (1982) to be 2. This 
conjecture is supported strongly by the works of Guttmann (1983) and Majid et a1 
(1983a). The exact value of v at d = 3 is also not known; the most accurate estimate 
is ~ 2 0 . 5 8 8  (Le Guillou and Zinn-Justin 1980, Majid et a1 1983b), while Sahimi 
(1984) has suggested v ( d  = 3) = 113/192. For SAWS on percolation networks one has 
to distinguish several cases. Above pc and for R >> tpr we expect to have ordinary 
SAWS, i.e., v remains unchanged. Slightly above pc and for R << tp, we do not expect 
to recover the percolation SAWS critical behaviour; this situation is similar to SAWS 

on percolation clusters at pc. At pc the correlation length tp is infinite and thus R is 
characterised by a new critical exponent. However, depending on whether the SAW 
is performed o n l y  on the largest percolation cluster at pc or on all clusters, we expect 
to have two different critical exponents, just as in the case of ordinary random walks 
(Gefen et a1 1983). If the SAW is performed on a single cluster, we expect to have 

R -Nul ,  (2) 
whereas if the SAW takes place on all clusters and the results are averaged over all 
clusters, we anticipate that 

R - N u > ,  (3) 

v l >  v2 > v, d c 4  (4) 

where v1 Z v2 and these exponents are universal. Moreover, we should have 

since the fractal structure of the clusters should enhance the self-avoiding effect. We 
propose the following scaling function representation for R : 

R - N”.$”f(N/(;’”). ( 5 )  

f ( Y ) - - Y U ?  y >> 1 (6) 

f ( Y )  - Y y ’ - ” ,  y<< 1. (7) 

The scaling function f ( y )  has the following properties. If N >> ti’“, i.e. p >> pc, then 

whereas if N << ti’”, i.e. p = pc or p > pc but R <c. tp, the function f ( y )  obeys 

It is easily shown that x = ( v -  vl)/ v. For equation ( 5 )  to be valid below pc we should 
have f ( y )  - y-”,  so that R becomes independent of N and approaches a (p-dependent) 
quantity which should diverge as pc is approached from below. Our scaling function 
representation of R suggests that &,--(pc-p)-‘, where z =  v p v , / v ,  where v p  is the 
critical exponent of percolation correlation length tp. 

If the SAWS are performed on all clusters then the statistics of interest should be 
averaged over all clusters. However, for SAWS,  the singly connected (dead-end) bonds 
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do not play any role and thus one can remove them from the clusters. Therefore the 
statistics of interest must be averaged over the distribution of the backbone of the 
clusters which is given by n, - s - ~ ‘  where T’ is a universal critical exponent which is 
related to other backbone exponents through scaling laws (Stauffer 1979), and s is 
the number of sites in the backbone. This establishes a connection between the statistics 
of SAWS on percolation clusters and those of the backbone of the clusters, a matter 
to be discussed elsewhere. 

Rammal and Toulouse (1983) presented an argument which indicates that as long 
as the spectral dimension d ,  of a fractal is less than 4, the self-avoiding effect would 
never become negligible, and thus v 1  # v2 # 4. This argument should hold for the 
largest percolation cluster at pc, the spectral dimension of which is approximately $ at 
all dimensions. Since for ordinary random walks at pc we have (Gefen et a1 1983) 
v l ( d  a 6) = & and v2(d 3 6) = 0, we conclude that for SAWS one must have vl (d  3 6) > & 
and v 2 ( d 3 6 ) > 0 ,  since a SAW should always grow faster with N than an ordinary 
random walk does. 

We now present a position-space renormalisation group (PSRG) approach to esti- 
mate vl in two and three dimensions. The exponent v2 can probably be estimated 
only by Monte Carlo simulations. We choose site-disordered lattices because it enables 
us to use large cells without using much computer time. Each site is occupied with 
probability p and empty with probability (1 - p ) .  We consider a cell as percolating if 
a set of connected occupied sites of the cell spans the cell in a given direction. For 
the SAWS we use the PSRG method of Family (1980) and de Queiroz and Chaves 
(1980). With each step of the SAW we associate a fugacity W and consider all vertical 
(or horizontal, which is equivalent) spanning SAWS which start at the lower-left corner 
of the cell; we use standard renormalisation cells, see e.g. Sahimi and Jerauld (1983). 
Because the SAW can take place along a bond if and only if the two end sites of the 
bond are occupied, the RG transformation W’ is written as 

I \ m  

where n is the total number of sites in the cell ( n  = b2, where b is the linear dimension 
of the cell) and Cm is the total number of SAWS of m steps that span the cell in the 
vertical (horizontal) direction if i sites of the cell are occupied. The two RG transforma- 
tions W’ and p f  (the probability that a site is occupied in the renormalised cell) have 
unstable fixed points at W = W* and p = p * .  The exponent v l  is given by v 1  =In A/ln b, 
where A = a W’/d W is the eigenvalue of the linearised RG transformation (8) evaluated 
at p* and W*.  A fractal dimension D for the SAW is defined by D = 1/ vl. A similar 
two-parameter PSRG method was recently used to study random walks on percolation 
clusters (Sahimi and Jerauld 1983) and on lattice animals (Sahimi and Jerauld 1984). 

(9) 

(10) 
where q = 1 - p .  The fixed points are p* = 0.61804 and W* = 0.5546, thus the fractal 
dimension D is found to be D = 1.3279. The global flow diagram for the coupled 
recursion relations (9) and (10) is shown in figure 1. Note that the flow on the critical 
surface is from SAW at pc to SAW at p = 1 (denoted by pure SAW).  Hence we conclude 

For a cell of linear dimension b = 2, we obtain 

p’  = p 4  + 4p3q  + 2p*q2, 

w f  = ( p 4  w4 + 2 p 3  w3 + p 2  w2)/p12, 

and 
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Figure 1. Global diagram of flow vectors from (9)  and (10). Arrows indicate the direction 
of flow, and the important fixed points are labelled. 

that SAWS above pc and on length scales much larger than &, have the same critical 
properties as those of SAWS at p = 1. Larger cells yield the same qualitative result. 

We determined the RG transformation p' and W' for cells of sizes b = 2-4 on a 
square lattice in closed form and for b = 5 , 8  and 10 by Monte Carlo method. The 
results for the fractal dimension D are displayed in table 1. As in the case of SAWS 
on fully connected lattices (de Queiroz and Chaves 1980, Family 1980, Redner and 
Reynolds 1981) the convergence of D to its asymptotic value ( b  + 0;)) is slow. The 
results of Stauffer (1981) and Tsallis (1982) indicate that in PSRG studies the finite b 
results may be extrapolated to b + 0;) by the following equation: 

D( b)  = D + (a, + a2b-nD)(1n b)-' , (11) 

where al and u2 are some constants. Here R is a correction-to-scaling exponent which 
is believed to be universal. For SAWS on fully connected lattices Djordjevic et a1 
(1983) estimated that R =: 0.66 f 0.07 in two dimensions, but for the present problem 
R is not known. If we fit our finite cell results to equation (1 l ) ,  we find that D - 1.281 
and R -  1.3. In many previous PSRG studies (see e.g. Eschbach et al 1981) the finite 
b results were extrapolated to b + 0;) by the following equation: 

D ( b )  = D+ c1(h  b)-' + c2(1n b) -2 ,  (12) 

Table 1. The fractal dimension D for self-avoiding walks at the site percolation threshold 
of a square lattice. b denotes the linear dimension of the renormalisation cell. 

b D 

2 1.3279 
3 1.3258 
4 1.3212 
5 1.3179 
8 1.3128 

10 1.3107 
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where c1 and c2 are again some constants. From this equation we obtain D = 1.285, 
which is comparable to the above estimate. This fractal dimension implies that v l ( d  = 
2) = 0.788, in agreement with the inequality (4). By using this value of v and the 
hyperscaling law (Y = 2 - v, d, we obtain (Y (d = 2) = 1.475, where we have used df = 3 
in place of d. 

In three dimensions the RG transformation can be calculated in closed form only 
for a b = 2 cell. The results for a simple cubic lattice are p* = 0.282, W* = 0.556 and 
D = 1.382. No calculations for larger cells were attempted since previous PSRG studies 
of SAWS on the simple cubic lattice (for p =  1) showed (Family 1981) that the conver- 
gence to asymptotic results is not monotonic. However, our estimate D -  1.382 is 
only 7.8% smaller than D -  1.5 which was estimated by Kremer (1981) by Monte 
Carlo simulations. 

We now discuss a plausible generalisation of the Flory theory for the exponent v l .  
Pietronero (1983) has developed a self-consistent method by which one can derive 
the Flory-Fisher formula (Flory 1953, Fisher 1969) for the exponent v which is given 
by v = 3 / (2+d)  where d is the dimensionality of the system. It is straightforward to 
generalise this method to fractals. The result is 

where df is the fractal dimension of the cluster. For the largest percolation cluster at 
pc we have df(d = 2) =%= 1.896, which then results in v l ( d  = 2) =%= 0.770. This is 
in excellent agreement with our estimate, v l ( d  = 2) = 0.778. In three dimensions with 
df(d = 3) = 2.53 (Margolina e ta l l982)  we obtain v l ( d  = 3) = 0.662, in good agreement 
with Kremer’s estimate and about 9.3% smaller than our b = 2 cell estimate. However, 
since df( d 2 6) = 4, equation (13) yields vl( d 2 6) = 4 which is not possible because this 
value of v1 implies a diffusive random walk. Thus while equation (13) works well in 
low-dimensional systems, it gives poor (and unphysical) values for v 1  at high dimensions. 

One may argue that the ratio df/ D must be an intrinsic property and thus it should 
depend only on the spectral dimension ds of the fractal. Then a plausible generalisation 
of the Flory-Fisher formula would be 

3 ds 
v1=-- df 2 + d,’ 

which reduces to v = 3/ (2+ d) for Euclidean spaces. If we take d,=: for 2 S d S 6, 
equation (14) would then yield vl(d = 2) = 0.633 and vl (d  = 3) = 0.473. These esti- 
mates violate the inequalities (4) and are not in good agreement with our estimate of 
vl in two dimensions and with Kremer’s estimate in three dimensions. However, for 
d 2  6, equation (14) yields v1 =&, a value which seems to be reasonable. In fact, we 
conjecture that this is an exact result. More work is necessary to assess the validity 
of equations (13) and (14). In table 2 we compare the predictions of equation (13) 
and (14). 

In summary, we have studied self-avoiding walks on percolation clusters. We have 
proposed a scaling function representation for the mean end-to-end distance R which 
describes a crossover from ordinary SAWS (above the percolation threshold pc)  to 
SAWS on percolation clusters at or below pc .  By using a two-parameter position-space 
renormalisation group method we have estimated the exponent vl in two and three 
dimensions and showed that SAWS at any p larger than pc have the same critical 
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Table 2. Comparison of the predictions of equations (13) and (14) for the fractal dimension 
D of SAWS at dimension d. d ,  denotes the fractal dimension of the largest percolation 
cluster at the percolation threshold, and d,  is the spectral dimension of the largest 
percolation cluster. 

d 4 d,  D (equation (13)) D (equation (14)) 

2 %  1.321 0.778 0.633 
3 2.53 1.330 0.662 0.473 
4 3.06 1.316 0.593 0.389 
5 3.52 1.327 0.543 0.340 

4 1 3 - 6 4  3 -2 10 

properties as those of SAWS at p =  1.  We have discussed two plausible generalisations 
of the Flory-Fisher formula for v, and showed that none of them yields satisfactory 
results at all dimensions. 

This work was supported in part by the US Department of Energy. 
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